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Introduction
e, founded by Leonardo “Fibonacci” Pisano Bigollo in

This paper aims to explore the Fibonacci Sequenc . .

1202. Fibonacci derived this sequence while studying the growth of a hypothetical problem concerning

the population of rabbits. This paper will also aim to validate the sequence, and to examine the
nature, specifically in plants. My interest in this topic was

frequency that Fibonacci numbers appear in . :
originally sparked when | came across a video on YouTube of a girl talking about the relationship
amine the overwhelming presence

between the Fibonacci sequence and spirals. She then went on to ex
of spirals and Fibonacci numbers in nature. After watching this video, | was interested in further

examining the relationship, and this seemed to be perfect moment to explore it myself.

The Sequence
Fibonacci's Sequence is a sequence of numbers, where the next number of the pattern is found

by adding the two previous numbers. The sequence starts with 0, and then proceeds with1,1,2,3,5,8,
13, 21, and so on. To find a specific term in the sequence, one can use the equation:

Xp = Xp-1 + Xn-2

Where x,, is the term number “n”, x,_, is the term before the one you’re trying to find, and x,,_, is the

term before that.

Proving the Sequence
Now ! will prove the sequence to validate Fibonacci’s findings. To start off the sequence, we

begin with 1. Then, due to the fact that the number that comes before that is 0, we add O to 1. The
resulting number is 1. Now we add 1 to 1 and we get 2. To find the following terms, we just continue the

pattern:
0+1=1
1+1=2
1+2=3
2+3=5
3+5=8
5+8=13
8+13=21

By using induction, due to the fact that all terms are defined in terms of all the smaller numbers before
them, we must use first prove that P(1) is true to form a basis for the rest of our proof. Then we can

move on to prove that P(n+1) is true. First we let:
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r= =~
Z 1.62
if this is true, then it fulfills that:
rl=r+1
And that in turn verifies that:
foz T2

Now w .
£aq ebmove on to prove that P(1) is true. While looking at our sequence, we can determine that
Sl = 1, but we can aiso prove this by saying that v2=2 = =1 < 1. Because the second term in the
e i :
quence is also one, we can prove this theory farther by saying that f, = 1, and that72-2 = r® = 1.

:'ow that we have established a basis, we must now prove an equation for when n > 1 is fixed. The
ypothesis from our first step is that P(1), P (2), P(3).... And P(n) are all true. The next step is to prove

P(n + 1), or that f,, ., > r™" 1. To begin, we start with:
fovr = fot fo-t
And then use our induction hypothesis to determine that £, = v®~2 and that f,,_, = ™3, Substitution

can then be applied to come up with:
farr =72 4073

If we factor a ™3 out of the equation, it gives us:
farr ="+ 1)
Now we use 2 = r + 1, which we previously found and incorporate that into our equation to find:

fap1 =13+ 1) =" 3 xrZ =1
Now we have proven that f,,, = "1, and validated our sequence.

Phi
The number ¢ is also incorporated into the Fibonacci Sequence. The ratio between any two

consecutive numbers in the sequence is approximately 1.618034, which is ¢. This also works with any
two random numbers from the sequence. ¢ can also be used to find a term number in the sequence

with the equation:
P — (_q))n
X, =
" V5

V5+1 V5-1 ®—@=1and®*g =1.Also,itis

To prove this, we first must know that ¢ = ==
important to know that ¢ and ¢ are the two roots of x2 = x + 1. This leads to the conclusion that
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x" = fib(n)x + fib(n ~ 1) when n > 0 and when fib(n) is a number in the Fibonacci Sequence. From
this formula, we can derive that:

¢™ = fib(n)¢ + fib(n — 1) and —@™ = fib(n)(—¢) + fib(n - 1)
If we subtract —@™ from @™, it gives us:
@™ — (=)™ = fib(n)(¢ — (~¢))

And to solve for fib(n), we divide ¢ — (—¢) out to get:

G = ()"
e = =)

Now we can refer to the fact that ¢ — (—¢) = v/5, which leads to:

fib(n) = " — (o)

V5
@ = 1/¢, and this means that:
et e 1 ~—n—__1—n_— i
Cor=¢teor- (=) =(3) =co

After finding this, we can make our final substitution for our final equation of:

Fib(n) = fn_"(\[_g_"ﬂ

Spirals

Another topic related to the Fibonacci Sequence is Fibonacci Spirals. To get a Fibonacci Spiral,
you first draw a one by one square. Add another square of the same height next to it. Next you add a
bigger, two by two square, that incorporates the first two squares on one of the sides. You then
continue to add larger squares incorporating the previous rectangle made as a side. Then, if you draw a
spiral connecting through the squares you will get a Fibonacci Spiral (see below). The sum of the squares
of any Fibonacci numbers is equal to the last number in the Fibonacci sequence that was used multiplied
by the next Fibonacci number. As the spiral progresses, the ration between the numbers gets even

closer and closer to ¢.
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Applying it in Nature

The Fibonacci Sequence is a pretty cool sequence by itself, but its applications in the real world
are what really drew my interest in this topic. Fibonacci numbers are apparent everywhere in nature,
from pinecones, to petals on leaves, to seashells, to ears, but in this exploration | will specifically be
focusing on Fibonacci sequences and numbers in plants. In nature, plants practically apply Fibonacci
numbers in the arrangement of their leaves and petals, the number of their petals or leaves, and the
arrangement of their seeds. Plants use this sequence to try to space their petals far enough apart to
obtain optimal sunlight. If they space them out with any angle that had a whole number at the base of
the fraction, there would eventually be overlap and sunlight would be lost, which would lead to a
decrease in their ability to photosynthesize. In order to eradicate overlap, the most irrational number is
needed to be used, which is ¢. If a plant spaces out its leaves or petals at this angle, which is
approximately 222.5° around the stem from the previous leaf or petal, the leaves would end up spiraling
out, but never fully overlap. These numbers appear in the spirals of leaves that go around the stem,
where each spiral is the number of leaves counted until you encounter a leaf directly above the starting
one. The numbers of turns in each direction and the number of the leaves met almost always are 3
consecutive Fibonacci numbers. Flowers also use Fibonacci Spirals in the packing of their seeds in the
seed head. This spiral pattern optimizes the number of seeds that are able to packed, while also keeping
the seeds uniformly packed. There is no cluttering at the center of the seed head and seeds are not too
spaced out around the outside. With larger flowers, the spirals are larger and farther out, while smaller
flowers have smaller and more compact spirals. The flower packs each seed a ¢th of a turn from the last

seed and a little further out.
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Conclusion
When | originally learned of Fibonacci’s sequence, it seemed like quite a simple sequence. You

just add the two numbers before to get the next term. But after further exploring the math and the
proofs behind sequence, it made me realize how complex this sequence is. Also, through further
exploring the applications that this sequence has in the world around it, it served to further spark my
interest in math. The abundance that these numbers appear in every aspect of the way plants grow to
optimize the amount of sunlight and rain it can receive is truly incredible, but it also demonstrates that
math is really applicible in the real world. The way Fibonacci also was able to derive this entire sequence
also serves to inspire people in the magic of math. Not only is this sequence practical and applicable
everywhere in nature, what seems like a simple sequence that really has more facets as you examine

the multiple ways it is aparent in the real world.
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