5 SL

1. Use the binomial theorem to complete this expansion.

$$
(3 x+2 y)^{4}=81 x^{4}+216 x^{3} y+\ldots
$$

(Total 4 marks)
2. Complete the following expansion.

$$
(2+a x)^{4}=16+32 a x+\ldots
$$

(Total 6 marks)
3. Consider the expansion of $\left(x^{2}-2\right)^{5}$.
(a) Write down the number of terms in this expansion.
(b) The first four terms of the expansion in descending powers of x are

$$
x^{10}-10 x^{8}+40 x^{6}+A x^{4}+\ldots
$$

Find the value of A.
(Total 6 marks)
4. Find the term containing x^{10} in the expansion of $\left(5+2 x^{2}\right)^{7}$.
(Total 6 marks)
5. Determine the constant term in the expansion of $\left(x-\frac{2}{x^{2}}\right)^{9}$.
(Total 4 marks)
6. Consider the binomial expansion $(1+x)^{4}=1+\binom{4}{1} x+\binom{4}{2} x^{2}\binom{4}{3} x^{3}+x^{4}$.
(a) By substituting $x=1$ into both sides, or otherwise, evaluate $\binom{4}{1}+\binom{4}{2}+\binom{4}{3}$.
(b) Evaluate $\binom{9}{1}+\binom{9}{2}+\binom{9}{3}+\binom{9}{4}+\binom{9}{5}+\binom{9}{6}+\binom{9}{7}+\binom{9}{8}$.

