Example 2

PQRS is a parallelogram in which $\overrightarrow{PQ} = \mathbf{a}$ and $\overrightarrow{OR} = \mathbf{b}$.

Find vector expressions for:

- \overrightarrow{OP}
- b RO
- SR SR
- \overrightarrow{SP}

a $\overrightarrow{QP} = -\mathbf{a}$ {the negative vector of \overrightarrow{PQ} }

b $\overrightarrow{RQ} = -\mathbf{b}$ {the negative vector of \overrightarrow{QR} }

 $\overrightarrow{SR} = \mathbf{a}$

{parallel to and the same length as \overrightarrow{PQ} }

 $\overrightarrow{SP} = -\mathbf{b}$

{parallel to and the same length as \overrightarrow{RQ} }

EXERCISE 12A.2

State the vectors which are:

a equal in magnitude

- b parallel
- c in the same direction
- d equal
- e negatives of one another.

- 3 Draw a scale diagram to represent the following vectors:
 - a force of 30 Newtons in the NW direction
 - b a velocity of 36 m s⁻¹ vertically downwards
 - \bullet a displacement of 4 units at an angle of 15° to the positive x-axis
 - d an aeroplane taking off at an angle of 8° to the runway at a speed of 150 km h⁻¹.

Example 2

PQRS is a parallelogram in which $\overrightarrow{PQ} = \mathbf{a}$ and

Find vector expressions for:

- \overrightarrow{OP}
- \overrightarrow{RQ} \overrightarrow{SR}
- \overrightarrow{SP}

→ Self Tutor

- $\overrightarrow{QP} = -\mathbf{a}$ {the negative vector of \overrightarrow{PQ} }
- $\overrightarrow{RQ} = -\mathbf{b}$ {the negative vector of \overrightarrow{QR} }
- {parallel to and the same length as \overrightarrow{PQ} }
- $\overrightarrow{SP} = -\mathbf{b}$ {parallel to and the same length as \overrightarrow{RQ} }

EXERCISE 12A.2

- 1 State the vectors which are:
 - a equal in magnitude
- b parallel
- c in the same direction e negatives of one another.

2 The figure alongside consists of two equilateral triangles. A, B, and C lie on a straight line.

$$\overrightarrow{AB} = p, \quad \overrightarrow{AE} = q, \quad \text{and} \quad \overrightarrow{DC} = r.$$

Which of the following statements are true?

- $\begin{array}{lll} \textbf{a} & \overrightarrow{EB} = r & & \textbf{b} & |\, p \,| = |\, q \,| & & \textbf{c} & \overrightarrow{BC} = r \\ \textbf{d} & \overrightarrow{DB} = q & & \textbf{e} & \overrightarrow{ED} = p & & \textbf{f} & p = q \end{array}$

ABCDEF is a regular hexagon.

- a Write down the vector which:
 - I originates at B and terminates at C
 - ii is equal to \overrightarrow{AB} .
- b Write down all vectors which:
 - are the negative of EF
 - ii have the same length as \overrightarrow{ED} .
- Write down a vector which is parallel to \overrightarrow{AB} and twice its length.

DISCUSSION

- · Could we have a zero vector?
- · What would its length be?
- What would its direction be?

To construct $\mathbf{a} + \mathbf{b}$:

Step 1: Draw a.

Step 2: At the arrowhead end of \mathbf{a} , draw \mathbf{b} .

Step 3: Join the beginning of a to the arrowhead end of b.

This is vector $\mathbf{a} + \mathbf{b}$.

Given \mathbf{a} and \mathbf{b} as shown, construct $\mathbf{a} + \mathbf{b}$.

THE ZERO VECTOR

Having defined vector addition, we are now able to state that:

The zero vector $\mathbf{0}$ is a vector of length 0.

For any vector \mathbf{a} : $\mathbf{a} + \mathbf{0} = \mathbf{0} + \mathbf{a} = \mathbf{a}$

a + (-a) = (-a) + a = 0.

When we write the zero vector by hand, we usually write $\overrightarrow{0}$.

Example 4

Find a single vector which is equal to:

$$\overrightarrow{BA} + \overrightarrow{AE} + \overrightarrow{EC}$$

$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA}$$

$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DE}$$

b
$$\overrightarrow{BA} + \overrightarrow{AE} + \overrightarrow{EC} = \overrightarrow{BC}$$

$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{AA} = \mathbf{0}$$

$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DE} = \overrightarrow{AE}$$

EXERCISE 12B.1

1 Use the given vectors \mathbf{p} and \mathbf{q} to construct $\mathbf{p} + \mathbf{q}$:

a _

b

C

d

e

f

2 Find a single vector which is equal to:

$$\overrightarrow{AB} + \overrightarrow{BC}$$

$$\overrightarrow{BC} + \overrightarrow{CD}$$

$$\overrightarrow{AB} + \overrightarrow{BA}$$

$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD}$$

$$\overrightarrow{AC} + \overrightarrow{CB} + \overrightarrow{BD}$$

$$\overrightarrow{BC} + \overrightarrow{CA} + \overrightarrow{AB}$$

3 a Given

and

use vector diagrams to find: $\mathbf{p} + \mathbf{q}$

- $\mathbf{ii} \quad \mathbf{q} + \mathbf{p}.$
- **b** For any two vectors \mathbf{p} and \mathbf{q} , is $\mathbf{p} + \mathbf{q} = \mathbf{q} + \mathbf{p}$?
- 4 Consider:

One way of finding PS is:

$$\begin{aligned} \overrightarrow{PS} &= \overrightarrow{PR} + \overrightarrow{RS} \\ &= (\mathbf{a} + \mathbf{b}) + \mathbf{c}. \end{aligned}$$

Use the diagram to show that (a + b) + c = a + (b + c).

An aeroplane in calm conditions is flying at 800 km h⁻¹ due east. A cold wind suddenly blows from the south-west at 35 km h⁻¹, pushing the aeroplane slightly off course.

Things to think about:

- **a** How can we illustrate the plane's movement and the wind using a scale diagram?
- **b** What operation do we need to perform to find the effect of the wind on the aeroplane?
- c Can you use a scale diagram to determine the resulting speed and direction of the aeroplane?